Wear Debris Characterization and Corresponding Biological Response: Artificial Hip and Knee Joints
نویسندگان
چکیده
Wear debris, of deferent sizes, shapes and quantities, generated in artificial hip and knees is largely confined to the bone and joint interface. This debris interacts with periprosthetic tissue and may cause aseptic loosening. The purpose of this review is to summarize and collate findings of the recent demonstrations on debris characterization and their biological response that influences the occurrence in implant migration. A systematic review of peer-reviewed literature is performed, based on inclusion and exclusion criteria addressing mainly debris isolation, characterization, and biologic responses. Results show that debris characterization largely depends on their appropriate and accurate isolation protocol. The particles are found to be non-uniform in size and non-homogeneously distributed into the periprosthetic tissues. In addition, the sizes, shapes, and volumes of the particles are influenced by the types of joints, bearing geometry, material combination, and lubricant. Phagocytosis of wear debris is size dependent; high doses of submicron-sized particles induce significant level of secretion of bone resorbing factors. However, articles on wear debris from engineered surfaces (patterned and coated) are lacking. The findings suggest considering debris morphology as an important parameter to evaluate joint simulator and newly developed implant materials.
منابع مشابه
Wear Properties of UHMWPE in CHARITE َ Artificial Inter-vertebral Disc
Over the past three decades more than a half a million joint replacements have been performed. Several advances have been made to the design of the implants, but despite the large success of these procedures, loosening of the components and periprosthetic osteolysys often requires a revision surgery. In looking at what causes this, the wear of the UHMWPE articulation surface and the associated ...
متن کاملBone-Implant Interface Biology ―― Foreign Body Reaction and Periprosthetic Osteolysis in Artificial Hip Joints――
Aseptic loosening and periprosthetic osteolysis are major problems in artificial hip joint surgery,for which a solution has yet to be found. Biological host response to wear debris combined with cyclic mechanical loading onto the bone bed around hip prosthetic implants has been considered as mechanism responsible for implant-mediated periprosthetic osteolysis. Any type of artificial joint glidi...
متن کاملLubrication and wear modelling of artificial hip joints: A review
The tribological performance of artificial hip joints is a critical issue for their success, because adverse tissue reaction to wear debris causes loosening and failure. Many studies on wear and lubrication of hip prostheses have been published in the last 10 years, mostly on experimental tests. Theoretical/ numerical models have been proposed for investigating geometrical and material paramete...
متن کاملInfluence of processing parameters and sintering atmosphere on the mechanical properties and microstructure of porous 316L stainless steel for possible hard-tissue applications
The 316L stainless steel has been widely used in both artificial knee and hip joints in biomedical applications. The average lifetime of artificial hip joints is about 10 years due to aseptic loosening of the femoral stem attributed to polymeric wear debris; however, there is a steadily increasing demand from younger osteoarthritis patients aged between 15 and 40 years for a longer lasting join...
متن کاملWear and Wear Debris Generated from Ceramic-on-Carbon Fibre Reinforced PEEK Hip Replacements
INTRODUCTION Concerns regarding UHMWPE wear particle induced osteolysis [1] have led to investigations of alternative bearing materials. Carbon-fibre reinforced poly-ether-ether-ketone (CFR-PEEK) has been shown in animal studies to have a similar biological activity to UHMWPE [2], whilst hip and knee configurations incorporating this polymer display reduced wear rates when compared with convent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2014